Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139290, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38653105

RESUMO

Iron is an important micronutrient that cannot be added directly into food products due to potential reactions with the food matrix, impact on color, and taste. Complexed biopolymeric nanocarriers can overcome these challenges particularly for oral delivery of iron, but selecting appropriate biopolymers, their ratio and pH of complexation is very important. In this study, whey protein concentrate (WPC)-pectin nanocomplexes were prepared at different concentrations (WPC 4, 6 and 8%; pectin 0.5, 0.75 and 1%), and pH (3, 6 and 9) to encapsulate iron. The smallest carriers were observed at pH 3; higher pH led to higher zeta potential (zero to -32.5 mV). Encapsulation efficiency of iron in nanocarriers formulated at pH = 3, 6 and 9 were 87.83, 75.92 and 20%, respectively. Scanning electron microscopy revealed the spherical particles at pH 3. To conclude, a WPC to pectin ratio of 4: 1 at pH 3 was the best conditions for loading iron.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36728841

RESUMO

There is an urgent need for the development of sustainable and eco-friendly pesticide formulations since common synthetic pesticides result in many adverse effects on human health and the environment. Essential oils (EOs) are a mixture of volatile oils produced as a secondary metabolite in medicinal plants, and show activities against pests, insects, and pathogenic fungi. Their chemical composition is affected by several factors such as plant species or cultivar, geographical origin, environmental conditions, agricultural practices, and extraction method. The growing number of studies related to the herbicidal, insecticidal, acaricidal, nematicidal, and antimicrobial effects of EOs demonstrate their effectiveness and suitability as sustainable and environment-friendly biopesticides. EOs can biodegrade into nontoxic compounds; at the same time, their harmful and detrimental effects on non-target organisms are low. However, few biopesticide formulations based on EOs have been turned into commercial practice upto day. Several challenges including the reduced stability and efficiency of EOs under environmental conditions need to be addressed before EOs are widely applied as commercial biopesticides. This work is an overview of the current research on the application of EOs as biopesticides. Findings of recent studies focusing on the challenges related to the use of EOs as biopesticides are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...